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Abstract: In this paper we derive the decay rate of solutions to the fraction Navier-Stokes equations, 
considering the property of the semigroup operator 

α)( ∆−−te and 2L -norms. So establish a new and 
concise method to get the better decay rate in )( 31 RH , which aviods using the Fourier splitting 
technique completely and relies on a rough decay estimates of 2)(

L
tu∇ . 

1. Introduction 
Consider the fraction Navier-Stokes equations: 
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Where ),,( 321 uuuu =  is the velocity field, ),( xtp  is a scalar pressure and 2/1)(],1,0( ∆−=Λ∈α . 
The study of the incompressible Navier-Stokes equations has a long story. In [1] and [2], Hopf and 
Leray proved the famous weak solutions to (1). Actually, there are many previous decay results for 
Leray-Hopf weak solutions, see [2, 9-12] and references therein. In [3], Wiegner did an important 
work. He proved a decay rate for a Leray-Hopf weak solution by the so called Fourier splitting 
method, which was first applied to parabolic conservation laws in [8]. In [4, 6] Zhou and Ning got 
the decay rate of the soutions to the 2-D dissipative quasi-geostrophic flows. In [5], Zhou got the 
decay rate of the solutions to the 3D Navier-Stokes equations by avioding using the Fourier splitting 
techique completely. 

The purpose of this paper is also to prove the decay rate of the solutions to (1) by the method. 
First, suppose that the solution is smooth and exists globally which can be achieved if that initial 
datum is small in [10], so we get a formal proof. Then, we use the argument of Caffarelli et all [7] to 
make the solution rigorous. So the decay rate established here is valid at least for smooth solutions 
with small data and suitable weak solutions by Caffarelli, Kohn, and Nirenberg. 

This paper is concerned with the decay rate of the decay rate of the solutions to (1) in )( 31 RH . 
First we consider the linear equation corresponding to (1) with the same initial data 
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The solution of (2) can be represented by the fundamental solution as 
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where αG  is given from the Fourier transform as    
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It is well-known that the 2L -norm of a weak solution to (1) decays to zero as time goes to infinity. 
A natural question is how fast does the solution decay in )( 31 RH .Our main theorem reads as follows. 

Theorem Let )( 31
0 RHu ∈  and )1,2/1(∈α . If the solution )(tϕ  to (2) corresponding to 0u  

satisfies 
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for some 0>β . Then there exists a weak solution ),( txu  such that 
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2. A rough decay estimate of 2)(
L

tu∇  

In this section we can derive a rough decay estimate for 2)(
L

tu∇  in 3R  by assuming that the 
solution is smooth. By Parseval's equality, it is easy to prove that 
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Therefore, we only need to get the estimate of 2)(
L

tuΛ . We first get the prior estimate which 
plays an important role in the following sections. 

Proposition 2.1 Let )1,
2
1(∈α . If there exists a solution ),( txu  to (1), then it 

satisfies 2
1

)1()( 2
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L
 in )( 31 RH . 

To proof the Proposition 2.1, we give Lemma 2.1 and Lemma 2.2 as follows: 
Lemma 2.1 Let )()( 3131

0 RHRLu ∈ . Then there exists the solution ),( txu  such that 
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 Proof. Assume that the solution is smooth in what follows in this section. From (1) we get 
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Because of 0=⋅∇ u , so we have 2
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Lemma 2.2 Let )()( 3131
0 RHRLu ∈  and ]1,0[∈α . There exists a weak solution u(t) to (1) 

satisfying α2
1
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Proof. Multiplying u on both sides of the equation (1) and integrating in 3R , we have 
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By Plancherel theorem, it follows that 
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Now we use Fourier splitting method. Let { })(:)( 3 tgRtB ≤∈= ξξ and R depends on )(tg ,where 
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By using (7) and Lemma 2.1, we obtain 
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Then integrating (8), we get 
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To prove proposition 2.1, we first let   [ ] 12 )1ln()1(
2
1

2
1)( −++






 += tttg

α
α  

and integrate it on both sides. We have    
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Then by (9) we can have 

∫ +
+≤+

+ t

LL
ds

s
Cuut

0 2/3
2

0
2

11
.

)1(
1)]1[ln( 22

α  

So we get 

             α
112 )]1[ln(2

−−
+≤ tCu

L
                                    (10) 

Let 
)1(2

1)(2

t
tg

+
=

α
α  again and integrate it on both sides, and we have 

   .)1()(2exp
11

0

2 αα +
+=





 ∫ tdssg

t
 

Then by (10), we can have  
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where C  is a positive real number which depends on 10 L
u  and 2L

u0  . Now we prove proposition 
2.1 by two parts as follows. 

Part I .1
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If there exists the smooth solution ),( txu  to (1) multi-plying u2Λ  on both sides and integrating in 
3R , then 
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Similary, we can get a differential inequality for
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On the other hand, multiplying equation (1) byu , and integrating for both space and time, then 
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where C  is the bigger constant of these in (14) and (15). 
From equation (14) and (15) and the choice of 0t , we have 
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for all 0tt ≥ . Then we want to obtain the integrability for 2L
uΛ  . Multiplying (1) by uα22-Λ , a 

similar compu-tation yields 
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3. Proof of the main theorem 
In this section, we assume the solution is smooth so that the second part of the proof is formal. 

Then a new, concise and direct method is used to prove theorem in the fundamental the above rough 
decay estimate. 

We present the solution )(tu  by the fundamental solution of (1) as 
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By Parseval’s equality, it follows that 
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Combining Proposition 2.1 and (26) together, it follows that 
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By direct computation, we find that 
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So there exists a 0t  sufficiently large such that ，
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Above all, we complete the theorem of the proof. 
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