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Abstract: In this paper we derive the decay rate of solutions to the fraction Navier-Stokes equations,
considering the property of the semigroup operator e " and L? -norms. So establish a new and
concise method to get the better decay rate in H*(R®), which aviods using the Fourier splitting
technique completely and relies on a rough decay estimates of |[Vu(t)| . .

1. Introduction
Consider the fraction Navier-Stokes equations:

Ju+u-Vu+Vp+(-A)“u=0
divu=0 Q)
u(x,0) =u,(x)

Where u = (u,u,,u,) is the velocity field, p(t,x) is a scalar pressure and « € (0,1],A = (-A)"'?.
The study of the incompressible Navier-Stokes equations has a long story. In [1] and [2], Hopf and
Leray proved the famous weak solutions to (1). Actually, there are many previous decay results for
Leray-Hopf weak solutions, see [2, 9-12] and references therein. In [3], Wiegner did an important
work. He proved a decay rate for a Leray-Hopf weak solution by the so called Fourier splitting
method, which was first applied to parabolic conservation laws in [8]. In [4, 6] Zhou and Ning got
the decay rate of the soutions to the 2-D dissipative quasi-geostrophic flows. In [5], Zhou got the
decay rate of the solutions to the 3D Navier-Stokes equations by avioding using the Fourier splitting
techique completely.

The purpose of this paper is also to prove the decay rate of the solutions to (1) by the method.
First, suppose that the solution is smooth and exists globally which can be achieved if that initial
datum is small in [10], so we get a formal proof. Then, we use the argument of Caffarelli et all [7] to
make the solution rigorous. So the decay rate established here is valid at least for smooth solutions
with small data and suitable weak solutions by Caffarelli, Kohn, and Nirenberg.

This paper is concerned with the decay rate of the decay rate of the solutions to (1) in H*(R®).

First we consider the linear equation corresponding to (1) with the same initial data

{atu +(-A)*u=0

u(x,0) = Uy (x) @

The solution of (2) can be represented by the fundamental solution as
o(t) =e ™ u,=G, *u,,
whereG,, is given from the Fourier transform as
FG, &)=t
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It is well-known that the L?-norm of a weak solution to (1) decays to zero as time goes to infinity.
A natural question is how fast does the solution decay in H'(R®).Our main theorem reads as follows.

Theorem Letu, e H'(R®) and a e (1/2]) . If the solution ¢(t) to (2) corresponding to u,
satisfies

le®)]. <C@+t)”,t>0

for some S > 0. Then there exists a weak solution u(x,t) such that

o
da |

2. A rough decay estimate of |[Vu(t)| .

lu@)|. <C@+t)~"

with g, = min{ﬂ,

In this section we can derive a rough decay estimate for ||Vu(t)
solution is smooth. By Parseval's equality, it is easy to prove that

Al = [_|ef a2 )de = [ || d& = v,

Therefore, we only need to get the estimate of |Au(t)||, . We first get the prior estimate which
plays an important role in the following sections.

in R® by assuming that the

LZ

Proposition 2.1 Let ae(%,l) . If there exists a solution u(x,t) to (1), then it

1
satisfies|Vu(t)| . <C(@1+t) 2 in H'(R®).
To proof the Proposition 2.1, we give Lemma 2.1 and Lemma 2.2 as follows:
Lemma 2.1 Letu, € L'(R*) N H'(R®). Then there exists the solutionu(x,t) such that

~ t 2
A1) <]lug ] +|§|IO Ju(s)|- ds. )
Proof. Assume that the solution is smooth in what follows in this section. From (1) we get
8,0+[¢" G =~F(u-vu).

Because of V-u =0, so we have|F{u-Vu}{ < |§|||u(s)||i2 . Then integrating the above equation with
respect to time [0,t],

2
P ds

6, 0] <[, (&0 + 4] Jus)

<ludll, +él [ fus). d
< Juoll +[£[[, Ju(s)|- ds @

Lemma 2.2 Let u, e L'(R*)NH"(R®) and & €[0,1]. There exists a weak solution u(t) to (1)

1
satisfying |u(t)|. <C(@+t) 2=, where C is the positive real number which depends on|ju,|, and

Juoll

Proof. Multiplying u on both sides of the equation (1) and integrating in R®, we have



2
A“ul|, =0
L

d
MOl +2

(%)
By Plancherel theorem, it follows that
£

d.. 2
S lo0[ +2Jeal =0 ©)

Now we use Fourier splitting method. Let B(t) = {cf eR® :|§| < g(t)}and R depends on g(t) ,where
g € C([0,4+];R™) is undetermined. We get

5 Jafde

Jo

ds-g¥f,

20| A2
[ dé > gZ“J'B(l)

A" d& (7)

a

_ ~2a
=9 .[R3 ®

By using (7) and Lemma 2.1, we obtain

do .- P
EIR3|U|2d§+292 IR3|u|2d§s

4797 O)u,|[, + 279> [ Ju(s)[l.ds  (®)
Then integrating (8), we get

exp[z [[g* (s)dsj [ [ < uo[l. + [ As)B(s)ds (9)

in A(s) = exp(2 jo 9% (r)d7),

4
der.

B(s) = 479" (s)|u,

2759 (s)[ u(z)

To prove proposition 2.1, we first let g2*(t) = (%Jrzij[(lﬂ) InL+t)]*
o
and integrate it on both sides. We have

t 2a l+l
exp(2 jo g2 (s)ds) =[In@+1)] *.
Then by (9) we can have

1
002 2 t 1
T e e
So we get
1t
Ju[f. <clin@+t] = (10)
Let g2*(t) = again and integrate it on both sides, and we have

20(1+1)

exp(z I; 9> (s)dsj =(1+ t)%.

Then by (10), we can have



1 5 1
Julf; <c@sty = +c@et) > [ ufln@+s)] “ds (1)

where C is a positive real number which depends on|u,||,
2.1 by two parts as follows.

of2 - Now we prove proposition

Part | g<a<1.

If there exists the smooth solutionu(x,t) to (1) multi-plying A?u on both sides and integrating in
R®, then

Ay dx < | IRS (u-vu)Aludx| (12)

1d
EEJ.RS

Due to the divergence free of the velocity fieldu , we have

Au|2dx+fR3

| Ls (u-Vu)A%udx |5 Ls div(u - u)A’udx |<

1 a1 12 1 -
E A“u g +EH (13)
Taking p = 2 6 andq:%, then by the embedding lemma in [13] and the fractional type
o — —4aa
Gagliardo-Nirenberg inequality, we get
2-a 2 2-a
HA (u~u)HL2 < C(|u , [A*“u W
HAZ a 2 i <C Aa+l .
ol . <C>||u “ JAcu
Hence (12) can be rewirtten in the following
A C Al o —pyacul? 14
—||uL2—< l A, a4
Similary, we can get a differential inequality for A‘“lu -
d 5-4a
A“ull ,» =DA% 15
4 ) (15)

On the other hand, multiplying equation (1) by u, and integrating for both space and time, then

||u(- t)”iz +2_r Au(, : S=||u ||i2 for all t > 0. Therefore, there exists a time t, such that
5-4a 5-4a
1
ol vl <ol ol <2

where C is the blgger constant of these in (14) and (15).
From equation (14) and (15) and the choice of t,, we have

9 au], <0and L oy
dt dt

. <0,

for all t>t,. Then we want to obtain the i
similar compu-tation yields

.2 - Multiplying (1) by A**“u, a
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MV ,+Aul?, <

2dt

a-5

(16)

Now Iett >, to be such that

5-4a

Juct, )”Lz A“ <||u || A“u(t) a <4— Then integrating (16) with respect to time
on[t,t],

HAl")’u(t)Hi2 + j; ||Au(s)||i2 ds sHAl'“ 2C.[ ||u(s)||L2 A“ ||Au(s)|| From

a Aul , <0 and by the choice of t,, we obtain (t—t,) Au(t) , < Au(s) 2 ds < 2|Ar®
dt L L t, L

So we get a rough decay estimate as

1

L2 <C(1+t) 2.

Part 11 1<o¢£§.
2 6

Multiplying equation (1) by A’u and integrating in R®, then

2

1

3
1d AUl +[Axeul’. <= [areul’. +clazu ()
2dt" L4 5

LZ
Let B(t) ={& € R*:| £|< g(t) < R}, where R is undetermined.

3 |2

A2U

=, | FIaF ds+ [ 1£F1aF de

(1

< RYul. +CRYZ Ao,

(18)

A1+a

2+2a
L2 [ I EPar g

2 2
> RZa _ R2+2a u o

(19)

Putting (18) and (19) into (17) and letting R be large enough such that CR*** s%, then we

obtain

1

S R <Ry e, (20)

by using Lemma 2.2.
Then integrating with respect to t, we get

1
Aul}, <exp(-R*t)[Au,|, +CR***@+t) «.  (21)
L

1

Therefore we get [Aul, <C(1+t) =,
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3. Proof of the main theorem

In this section, we assume the solution is smooth so that the second part of the proof is formal.
Then a new, concise and direct method is used to prove theorem in the fundamental the above rough

decay estimate.

We present the solution u(t) by the fundamental solution of (1) as

So we have

By Parseval’s equality, it follows that

u(t)=e ", - J.; e ) (u-vu)ds (22)

u(t) =e ", - j; Ve N9 (y @ u)ds (23)

Juco)fs: = e u,

t
+]
L2 0
t

+]
L2 0

e\ (y -Vu)Hdes (24)

Jue®

2 _ A2
= vy

Ve”‘za“’f)(u@u)u ds (25)
LZ

2a 2 2a
o =L e re
LZ

3
2 t 2a
L2 )

<[Du

(26)

HVe‘Azat u® U)Hiz <C|Fueu)|, J':e‘zrza‘r“dr

_5
4 t Ao
L2 ’

< Clju

(27)

Combining Proposition 2.1 and (26) together, it follows that

ju@],. <c@+v”+ ¢ I;(t - s)_%(1+ s)3||u(s)

L. (28)

@+ Ju®)]. <C+Ca+1 QM [2(t-s) @+ s) 2 ds +C(L+1)’ Q) jf (t- s)_% 1+ s)’%’ﬂ ds (29)

By direct computation, we find that

1

E_ﬁ

. 3 1, 3 .
andj‘l(t—s) d(l4s) 2 ds<t “(l+t)
2

If g < i, it is true that
4o

Lﬁl+ﬂ>1
t 3 1 3 2

[7t-9) @) as=t In(e+t),if%+ﬂ -1

(1+t)“2"”,if%+,8<1.

C@A+1)”Q(t) jf (t—s) “(1+s) 2 ds—0, t—>m..
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t 3 1
So there exists a t, sufficiently large such that c(1+t)ﬁQ(t)E(t_s)_E(1+ S)Tﬁdsgl,for any

2
t>t,.
Then from (29), we have

@+ <C+2Q@,for t2t, (30)

Let Q(t) = max{(L+ s)”|Ju(s)

L2}, then (30) can be reduced to

@+9°Q]. <C+3Q)+500. @

Now taking the maximum fort e [t,,T] on both sides of (31), we obtain

QM) <C+2Q(,) +, QM)
Therefore,

[

A+t Ju(®)]: <2C + max{a+)’u(s)]. <o

3
Now we consider the case S > %.Since (L+t)” < (L+t) “=,it follows from the above step that
(04

3

Ju®)],. <C@+1t) 5. Thanks to (27) , we obtain that

t _5
L <CAL+t)”F + cjoz (t—s) “|u(s)|’.ds

Juct)

3 N
+Cfit-9) @+s) 2 Jue).ds.  (32)
2
Then by the rough estimate, it follows that
t _5 _5
C joz (t—s) “u(s)|.ds < Ct .

Taking f, = min{ﬂ,%}, (32) is reduced to
(04

ju@]. <ca+t ™ +c jt (t— s)’% A+ s)’%\\u(s)HLz ds.(33)

Multiplying (1+t)” on both sides of (33) and taking
Q(t) = max{(1+s)™|u(s)] .}, we have

0<s<t

@+1)” u(t)

L SCHCH)*QM[i(t—35) *@+s) 2 " ds.

1 3

<C+CQML+t) 2t 4o, (34)
Similarly, we obtain
@A+ t)%ut)] . <oe.
Above all, we complete the theorem of the proof.
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